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ABSTRACT

Okamura, Kiyohisa, Ph,D., Purdue University, June 1963,

Optimum Nonlinear Control of a System with Iwo Imputs and One Output.
Major Professor: Rufus Cldenburger

9}’&7/)/

Much work has been done in the field of optimum nonlinear control
of multivariable systems., This effort has been largely mathematical and
programming actual optimum control schedules is still difficult and
laborious. Mere direct methods te achieve an optimum controller for
multivariable systems as a function ef the state variables may be culte
useful in many cases. This thesis propeses the extension of Oldenburger's
approach to optimum nonlinear control ef single variable systems to that
of a simple class of multivariable systems. The class next in complica-
tion to single input-single output systems may be the one where the
system has two inputs and one output, This class may be treated as a
single input-single output system except where one of the inputs and the
time derivative of the ether are bounded. This class of systems is to be
optimized such that the time duration of the transient is minimized as
well as the maximum over or under swing, etc, After the transient
vanishes both inputs are to be brought to their reference values as
quickly as possible. A controller is designed which ylelds an optimm
transient, The controller uses a check-decision process which does not
arise in a single input-single output system, The approach developed

here is direct and straightforward rather than abstractly mathematical,
$U+HOL



INTRODUCTION

This thesis concerns optimum nonlinear control of a simple class of
multivariable systems, The control system is composed of a plant to be
controlled and a controller which optimizes the response eof the controlled
quantity ef the plant according to specified criteria, This type of
control has been treated by many engineers and mathematicians,

In 1944 R.()ldentmr‘ger'1 derived a control scheme to obtain the optimum
transient of the system with a bounded input, He did this while he was
studying an aircraft engine-propeller system. D.McDonald? in 1950
published a paper on optimum nonlinear control of second order systems
with bounded input. This was followed by papers from 1951 to 1959 by
A.Hopiin3, Uttley and B.H.Hamond®, I.Flligge-Lotz5, L.P.Kazdab,
T.K.Stout7, and others, L.M.Silvge, T.Bogner? both in 1954 andS.S.L.Q':angD
in 1955 treated systems of third and higher orders. Nonlinear systems
were covered by R,Oldenburger, J,C,Nicklass and E.H.Gambleu in 1961,

In 1953 D.W.Busha\r12 published a paper concerned with a treatment
on determining the switching for optimum control. In 1956 R,Bellman,
I.,Glicksberg and 0.Gross13 applied Bellman's dynamic programming technique
to optimum nonlinear control systems. In 1957 L.S.Pmtryaglnm presented
a new principle applicable to multivariable control systems with bounded
inputs, More detailed discussion about Pontryagin's maximum principle
was given by L.I.Rozonoerl>, J,P.LaSallel® in 1960 published a proof of
the existence theorem for optimum transients., In 1962 several papers on

optimum nonlinear multivariable control systems were published by



B.Friedlandl’, L.Markus and E.B.Leel®, E.R.Rangl?, Yu-thi Ho20,
G.Boyadjieff, D.Eggleton, M,Jackues, H,Sutabutra and Ya'l'akahashiz1 and
others. The works cited above are largely mathematical and programming
actual optimmm control schedules by these methods is difficult and
laborious, Purthermore, practical applications have not been extensively
treated, This thesis proposes the extension of Oldenburger's appuadll
to optimum nonlinear control of single variable systems to that of a
simple class of multivariable control systems where a practical
engineering example is treated, The approach developed here is direct
and straightforward rather than abstractly mathematical,

Oldenburger treated systems with one controlling variable and one
controlled guantity where the controlling variable or its time derivative
is bounded, The systems next in complication to single input-single
output systems are those which have one contrelled quantity and mere
than one controlling variable. However, for the case of a system where
each of the controlling variables but none of the time derivatives are
bounded or, conversely, where the time derivative of each controlling
variable but none of the controlling variables are bounded, the treatmat
is the same as for single input-single output systems. The reason for
this is given as follows. If each contrelling variatle is limited, the
sun of the controlling variables can be made to take on any value
between two limits where one of these limits is the sum of the upper
bounds and the other the sum of the lower bounds of the controlling
variables. Thus the sum of the controlling varlables is treated as a
single input, The same argunent holds for the case when the time
derivative of each controlling variable is bounded but not the

controlling variables themselves,



Multiple input-single output systems which are not equivalent to
single input-single output systems as explained above are those which
have inputs composed of a mixture of bounded variables and variables
with bounded derivatives, Dividing the inputs into two sums, one ef
which contains the variables whose derivatives are bounded and the other
containing the remaining variables which are limited. The above systems
may be treated as dual input-single output systems, This is the case
with which this thesis is concerned.

The control system treated in this thesls has 3 physical interpre~
tation as follows, The controlled quantity is the deviation in the level
of the surface of a liguid in a tank from a reference value. One
controlling variable is the rate at which liquid flows out of the tank
through a pump. The other is the position ef a valve controlling flow
to a tank as shown in Figure 1. The acceleration and deceleration of the
pump connected to the motor are limited whence the rate of change of flow
out of the tank is bounded, The pesition of the valve is usually limitz'sd°
We have a case where one of the controlling variables and the time deriva-
tive of the other controlling varigbles are bounded. Our object is to
bring the controlled quantity to zero in an optimum sense ( the time
duration of the transient is minimjzed as well as the maximum over or
under swing, etc, ) after the disturbance dies out, One of the
controlling variables can be made to be "bang-bang", but the other cammot.

The time optimal centrol of thi; system is not always unicuely
determined. We consider three hypotheses to find the optimum control
schedule for which we derive two kind ef control functions. Since the
controlled plant has two inputs and one output, the output can be set

equal to zero while the inputs are not zero. Hence we consider the



control schedule, after the controlled quantity becomes zero, in which
beth controlling variables are brought to zero in minimum time while the
contrelled quantity remains zero. Thus the contrel ef the system
consists of two stages. In the first stage the contrelled quantity is
to be brought to zero, In the second stage the controlling variables are
brought to zero, The programs te achieve the eptimum control schedules
fer the above two stages are desigried from practical considerations, The
controller must go through a check-decision process in additien to exam-
ining signs of switching functions. This does not arise in the case of
single input-single output systems, It is mathematically proved that all
transients based on the above control schedules are optimum,

The closed loop system with the eptimm centroller was tested en an
electronic analeg computer, Relays were used in logical circuits which
realize the optimum control schedules. Good agreement was found between

theory and analog simulation results,



LILUID SURFACE CONTROL SYSTEM

The following differential equation is associated with the tank in

Figure 1

A _g_%ﬁﬁl_ = ni(t) - golt) (1)

where
h(t) = level of liouid surface ( deviation from reference value )
qi(t) = rate of inzoming flow ( deviation from reference value )
qo(t) = rate of outgoing flow ( deviation from reference value )
A = constant area of licuid surface
The rate of incoming flow is taken proportional to the position of the
valve which is limited, i.,e,
qy (t) =&L(t) (2)
ta(e)l < L (3)
where
2(t) = position of the valve ( deviation from reference value )
o, L = positive constant
The rate qo(t) of outgoing flow is proovortional to the revolution per
unit time, i.e, rpm of the motor, Hence it follows that
ae(t) = —gn(t) ()
where
n(t) = revolution per unit time of the pump and motor ( deviation
from reference value )

B = positive constant
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The angular acceleration and deceleration of a motor connected to a

pump are usually limited, Tt is assumed that

,_d__“_(l'l_ < N (5)

where N is a positive constant. It is also assumed that qi(t) and

dq,(t)/dt can arbitrarily be made to take on any instantaneous values
in the range -d L+l and - BN-»pN respectively. If h(t) = dh(t}/dt
=0, the system is said to be in the equilibrium g}ate. This does not
imply, however, that the controlling variables are at their reference
values, namely n(t) =£(t) = O, In this thesis, the system is said to

be in the reference state if h(t) = n(t) =Q(t) = 0,



NORMALIZED SYSTEM

We normalize Relations (1), (3) and (5) as
Y/(T) = X (T) + Xy(T)
Iquml = 1
|x2 (T)] = K

by introducing the following dimensionless quantities

Y(T) = -‘;%%l x (1) = -Bft) X,(1) = aL(t)

’ N T Nt
o -
K - "““L_ .—t‘—t'L
PN t » {
where
t, = arbitrary time origin

¥ = arbitrary time scaling factor ( may be unit time )

and a prime stands for the derivative with respect to time T,

(6)
(7)
(e)

(9)



STAGES OF CPTIMIZATION

We consider two stages which the system will take, In Stage 1 the
controlled quantity Y(T) is not identically zero, In Stage 2 the
controlled guantity Y(T) is identically zero but nct both X,(T) and
X5(T) are zere, In Stage 1 a control is said to be optimum if the time
duration and maximum over ( or under ) swing of the transient are
minimized, If the above control is not unique, the control is said to
be optimum when the area between the transient trajectory and the T
axis is made as small as possible while the time duration and over ( or
under ) swing of the transient are kept at their minimum values. In
Stage 2 a control is said to be optimum if both Xj(T) and Xo(T) are
made to be zero in minimum time, Our object is to obtain the optimum
control both in Stages 1 and 2,

Suppose that

-K<X) <K (10)
at some time T = Tg. It is possible to keep X;(T) in the Range (10)
after T = Tp. For sxample, if we set X3' = O from T = TR, we obtain
X)(T) = X,(TR) for T = Ty, where X;(Ty) satisfies Relation (10), On
the other hand, the variable X,(T) can be made to take on an arbitrary
instantaneous value between -K and K, Therefore, if Relation (10)
holds, it is possible to obtain the relation X = - Xy, or Y!' = O,
Hence, if the relation

Y(T) = 0 ' (11)
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is also obtained at the instant T = Tg, it is possible to make Y(T)
identically zero from the time T = TR. Conversely, if Relation (10) is
not satisfied at any instant, we cannot set Xp = - Xj, L.e, Y!' ¥ o0,
Hence, the controlled cuantity Y(T) cannot be made zero., As shown
above, the cuantity Y(T) can be made to be identically zero if and only
if Relations (10) and (11) are simultaneously satisfied at some time.

Je intrcduce the following functions for Stage 1:

$ (1) = SZ (X)) dA + Y(0) (12)
N T A
$(1) = - 50 X (A) dan (13)
where
X(r) = $(T) - Y(T) ()
It fcllows that
¢ (1) = %4(T) (a)
PHT) = -X5(T) (b)
Y()= o0 (¢) (15)
l¢r(T)| < 1 ()
ly'(T)]= K (e)
Relations (10) and (11) are ecuivalent to the following:
-k € ¢(T) < K (16)
¢(1) = Y(T) (17)

The variable X, may change suddenly at any instant and therefore
the derivative Y' is not unicuely determined at that instant., Since
the value of X9 may be chosen at will subject to restriction imposed by

Relation (8) it is sufficient to know the value of X in order to
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determine the derivztive Y', Thus the values ¢Ncn and ¢'(O)
determine the initial conditions Y(0O) and Y'(0), where the function

¢ (T) and its derivative ¢'(T) are continucus. Instead of directly
treating Y(T) we consider the functions $ (T) and Y(T) throughout the

analysis of transient responses in Stage 1,
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OPTIMUM CONTROL IN THE FIKST STAGE

In this section we treat the control of Stage 1. In this stage it
is desired to make ®(T) ® W(T) in minimum time such that the area
between the transient resronse trajectory and the T axis is minimlzed,
Although analog computer results ef optimm transients will be shown
later in terms ef the controlled quantity Y(T), fer the sake of clarity,
all postitle types of transients are explained here in terme of
functions P(T) and W(T). There are six majer distinct types of
transients in Stage 1 which are labeled Transient Types A through F in
the discussion below depending on the conditions at T = O, Each major
transient type aay have two or more sub types of transients, The
treatment of the cases where Y(0)<0 is identical to that when Y{0) =0,
This is true because the types of optimum transients possitle fler
Y(C)=C are mirror images about the T axis of trose for Y(C)=0,
Treatment of the case for Y(C) = C is given only for X,(0)=~0 since the
types of transients for X;(0)=0 and Y(C) = O are the mirror images of
their counterparts,

In the figures for illustration of Stage 1, the transient time is
denoted by Tr, 1.e, Stage 1 terminates at the time T = Tg. It is
proved in the fellowing sections that for an optimum transient in Stage
1 both the controlling variable X, and the time derivative of the other
contrelling variable Xy ' must be set at all times at their extremum

values, Hence, fer such a transient we have
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$r = X' = 21 (18)
y'= 2K (19)
Since the treatment of the optimum transient is identical for Y(0)=0
and Y(0)<0, we shall develope the optimum control schedule considering
that Y(0) satisfies
Y(0) = © (20)
The problem is to determines the optimum values for P" and ' at
T = 0 as functions of the initial conditions, Noting that 4’(0) s 0
from Relation (15-c), we find the solution of Equation (19) to be
P = LT (21)
Plotting the above relation in Figure 2, we obtain two trajectories
denoted by 43 and 4, corresponding to the positive and negative
signs, reaspectively, which occur on the right hand side of Relation
(21). Thus, the trajectories A]_and 4, are the upper and lower
boundaries, respectively, of a family of trajectories representing the
function W (T).
In order to determine the value of ¢"(T) at T = O we consider the
case »
¢" =1 (22)
Plotting Relation (22) for various initial concitions we examine
whether or not the above choice is optimum, The examination could be
made by choosing ¢" = - 1 instead of Rela£1on (22), but as we shall
see, Relation (22) represents the proper choice at T = O for larger

class of initial conditions. Referring Relatione (12) and (15-a), there

results

¢! =T+ x(0) (23)



Y(0)

FIGURE 2 A FAMILY OF ¢ TRAJECTCRIES FOR & =1

AND A FAMILY OF Y TRAJECTCRILS FOR Y' = ¢t K



15

$- I+ x0T+ 0 (24)

Plotting Relation (24) in Figure 2 we obtain a family of trajectories
designated by [ through [5 for Y(0)>O0. The case for Y(0) = O is to
be treated later in this section, This family of trajectories is
classified as follows, By Relation (23), for each trajectory [y (1 =
1,2,.:,5) there exists a point where the slope of the trajectory is -K,
This point is denoted by Py as shown in Figure 2. The point Py lies
above or on the trajectory 4y, below or on the trajectory 45, or
between the trajectories A3 and 4. There are five cases for T > 0
which must be considered depending on the location of the points Py
with respect to the trajectories 4 and 45,

Consider a special case represented by the trajectory [ and its
point P5, where the point P2 is on the trajectory Al. The functions
P (T) and W(T) which correspord to the trajectories [ and 4,
respectively satisfy Relations (16) and (17) at the instant when the
point P, is obtained, Let the above instant be designated by Tgz.
Hence, the ccntrolled quantity Y is zero at T = TRy and can be kept
jdentically zero for T z Try, By Relation (22) the trajectory [p is
concave up with the slope increasing at the maximum rate. Therefore,
any other ¢ trajectory with the same initial slope as the trajectory
"5 cannot attain the slope ecual to or greater than -K before the
instant T = Tgy, i,e, the time duration Tgs is the minimum transient
time and the trajectory r'2 is the unique curve which yields the
minimum transient time Tpro. OSince the trajectory Al is the urper
boundary of a family of  trajectories, there exists no other W

trajectory which intersects the trajectory r2 before or at the instant
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T = Tra. Thus it has been proved that the trajectories [, and 4y for
T =< TRy uniquely determine the optimum transient in Stage 1 under the
given initial conditions, The above type of optimum transient is
called Transient Type A.

Another special case concerns the trajectories r‘h and 62 where
the point P, of the trajecotry r'h is on the trajectory 4,. Since the
trajectory ‘12 always has slope -K and the slope of r‘l. at the point P,
is -K, the trajectory A, is the tangential line of the trajectory l"h
at the boint P, . By the same reason as for Transient Type A, except
that the trajectory A, is here the lower boundary of a family of W
trajectories, the trajectories [, and 4, uniquely determine the
optimum transient in Stage 1 for T £ Tp; where the time Tp, corresponds
to the point P, . The type of transient obtained above is called
Transient Type B,

In the above cases the @ trajectory corresponding to [ or I
i1s concave up with its slope increasing at the maximum rate and the
trajectory corresponding to Al or 42 is the upper or lower boundary
of a family of trajectories. The optimum transient for Stage 1 is
obtained without changing the values of X' and X, for the above two
cases, Types A and B are special cases which would‘not often occur but
theoretically important in determining control functions. Types C
through F discussed below are the usual types which would generally be
found,

Ira ¢ trajectory with its slope increasing at the maximum rate
starts at the same point as the trajectory |"2 with greater slope than

that of [2, the trajectory r‘l in Figure 2 would result, Here the
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point on f‘l denoted by P} at which the slope is -K lies atove the
trajectory 41. Though the case in which the point P exists for T=0
is shown in Figure 2, the point Py may be found for T = 0.in some other
sases in which the trajectory f‘l has the greater initial slope, It
will be proved in the next section that the trajectory r‘l is not the
optimal one but that the optimal trajectory must be concave down with
its slope decreasing at the maximum rate near T = O. To show this let

¢“ te given by

cb" = -1 (25)
The solution of the above equation is then
' = -1 + x(0) (26)
2
¢ -- _3- + X(0) T * ¥(0) (27)

In plotting Relation (27), two cases must be considered. For the first
case, the plot of Relation (27) designated by [" as shown in Figure 3(a)
has slope ~K at the point denoted by P which 1s on or below the
trajectory Al whers the irajectory Al is the same as in Figure 2,
Since the trajectory I" is concave down, it intersects the trajectory
4y with a slope equal to or greater than -K, The above intersection
point is denoted by R in Figure 3(a). For the case in which the point
P is on the trajectory 44, the points P and R coincide with each other,
Since the slops of the trajectory 441 is K, the slepe of the trajectory
" at the point P is less than K, By the above arguments the functions
$ (T) and W(T) satisfy Relations (16) and (17) at the point R,
Therefore, the controlled quantity Y can be kept identically zero from
the instant designated by Ty which corresponds to the point R as shown

in Figure 3(a).



Y(0)

(a)

Y(0)

(b)

FIGURE 3 TRANSIENT TYFRS C
(a) TRANSIENT TYPE C1

(b) TRANSIENT TYFE C,

18
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For the second case, the trajectory determined by the plot of Relation
(27) has slope -K at a point above the trajectory 47. This case is
illustrated in Figure 3(b)., Denote the curve APR' which corresponds to
Relation (27) by F'. The point at which the trajectory [’ has slope
~-K is designated by P. The point P may exist for T £ O. The point R?
is the intersecticn point of the trajectories ['' and 01. Since the
trajectory ['' is concave down, it has a slope less than -K at the point
R'. Since Relation (16) is not satisfied at the point K', the controlled
quantity Y cannot be made identically zero. The optimum ¢ trajectory
will be obtained, then, by the following procedure. Chocse a peint on
the curve segment PR', calling this point the switching point 5. At the
roint S we set @' = 1 so that the concavity cf the ¢ trajectory is up
and maximum, wWe adjust the point S such that the ¢ trajectory
interse-ts the trajectory 43 with slope -K. The & trajectory obtzined
above is designated by [ in Figure 3(b). The intersection point of the
tralectories ["and 4, is denoted by K.

That such points S and R exist may be seen as follows. Let the
point S coincide with the point F. The trajectory [t has a slepe
greater than -K so that the slepe of the trajectory I at the point R is
also greater than -K. As we move the point S along the trajectory !
for increasing time, the slepe of the trajectory ‘[ at the point R
continuously decreases and the point R approaches the point R', When
the point S reaches R', the points S, R' and R coincide together and the

slope of the trajectory [ at this point is less than -K, As shown

above the slope of the trajectory [T at the point R changes from a value

greater than -K to a value less than -K as the point S moves from P to
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RV, Hence, there must exist a point 5 on the trajectory ' such that
the trajectory I has s slope -K at the point R.

The functions P(T) and Y (T) determined by M and 43 of Figure
3(b) satisfy Relations (16) and (17) at the instant designated by TR
which corresponds to the point R. Hence, the controlled quantity Y can
be kept identically zero from the instant T = TR. It will be proved in
the next section that the ‘$ and V¥ trajectories determined in the above
two cases are optimal. The type of optimum transient for the first
case is called Transient Type C) and for the second case Transient Type
Cre. Transient Types Cy and Cy are the class of.transient types denoted
by C. As shown above, for Transient TypesC, the initlal selection of
the controlling variables is X;' = - 1 and X2 = K,

For the next type of transient called Transient Type D, we treat
the trajectory designated by ['3 in Figure 2 which corresponds to
Relation (24). The initial slope of the trajectory |"3 is between the
initial slopes of the trajectories [» and FL in magnitude, Therefore,
the point denoted by K3 at which the trajectory [_3 has slope -K is
between the trajectories Al_and 42. The optimal trajectories
representing the functions $(T) and W(T) are determined as follows.
Plot the trajectories r'3, Al and 45 again in Figure 4. Draw the
tangential line to the trajectory F3 at the point P3, i.e, let the
tangent line have slope -K. lLet the intersection point of the above
tangent line and the trajectory 41 be denoted by S which is called the
switching point. Let the line composed of the line segments OS5 and 5Py
be designated by d. The line segment SP4 correspon@d® to the equation

¢ = -K, Relations (16) and (17) are satisfied by the functions ¢(1)
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FIGURE 4 OPTIMUM TRAJECTORIES FOR TRANSIENT TYFE D
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and W (T) representing the trajectories [3 and 43, respectively, at
the instant T = TR where the time Ty corresponds to the point P3.
Hence, the controlled quantity Y can be made identically zero for T = Tg.
The proof that the trajectories [-3 and 4 yield the optimum transient
for Stage 1 will be given in the next section. Thus, it has been shown
that the initial setting of the controlling variables for Transient Type
D must be X;' =1 and X; = =K for optimum control,

Now consider the plot ef Relation (24 ) represented by the trajectory
FS in Figure 2 where the point P5 on the trajectory '"5 lies below the
trajectory Aizc Again ' PS denotes the point on the trajectory rg
where the slope is -K. This case may occur when the value of Xl(O),
1.6, $'(0) is small, Since the trajectory [T5 is concave up, it
intersects the trajectory Ao twice, At the first intersection point
the slope of the trajectory [ is less than -K so that Relation (16)
is not satisfied, i.e. the controlled quantity Y cannot be made
identically zero. The slope of the trajectory f“5 is always increasing
at the maximum rate and becomes -K at the point Ps;, where Relation (16)
is satisfied for the first time, However, Relation (17) is not
satisfied at the point P5 so that again the controlled Y cannot be made
Zero, §fter the point Pg is attained, the trajectory r‘s intersects
again the trajectory 4,. Two cases are considered with respect to the
value of the slope of the trajectory |'5 at the second intersection
point of the trajectories [s and 4,. For the first case the slope of
the trajectory F3 at the second intersection point is equal to or less
than K. The trajectories ‘_5 and A2 for this case are shown in Figure

5(a)., The second intersection of the two trajectories is denoted by R,
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and the corresponding time by Tg. The trajectory f"5 has a slope
greater than -K at the point R. By the above arguments the functions
® (T) and W(T) corresponding to the trajectories M5 and 4,,
respectively, satisfy Relations (16) and (17) at the instant T = Tg.
Hence, the controlled quantity Y can be made identically zero for
T > Tg, .
Consider the second case where the trajectory Fg has a slope
greater than K at its sezond intersection point with the trajectory 49
which is designated by R' as shown in Figure 5(b). The trajectory g
must have the slope -K al some point on the curve csegment of the
trajectory FB determined by the points Pg and R', If the concavity of
the trajectory rg is changed at some point denoted by S on the curve
segment PR! by setting <b" = « 1, we obtain the trajectory designated by
", where I from the roint S on is concave down with its slope decreasing
at the maximum rate, By reasoning similar to that employed for
Transient Type C5, the point S can be chosen so that the trajectory r
will cross the trajectory ﬂz with the slope K, This may be understcod
if we consider the mirror images, with respect to the T axis, of the
trajectories [T, 7 and 4; in Figure 3(b) and compare them with the
trajectories I, l‘5 and A, in Figure 5. Let the intersection point of
the trajectories [and A2 be denoted by R and the corresronding instant
by Tpe The trajectories [and 42 determine the functions P (T) and
Y (T) which satisfy Relations (16) and (17) at the instant T = TR so
that the controlled cuantity Y can be kept identically zero from that
instant, The type of transiert for the first case is called Transient

Type E, and for the second case Transient Type E,. Transient Types
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E] and Ep are classed as Transient Tyres E. It will be proved in the
next section that Transient Types E are optimum., As shown above, for
Transient Types E the controlling variables at least near T = O must be
set X' =1 and X5 = K, .

We have treated above all possible cases of optimum transients
occuring for the initial conditions Y(0) ¥ O, Now we are going to deal
with the optimum control for the case in which Y(0) = O, As explained
in the begining of this sectionitig sufficient to treat only the czse in
which Xl(O)’O, in investigating the optimum transients with the initial
condition Y(0) = O, This type of transient is called Transient Type F.
If Y(0) = 0 and 0<Xy(0) = K Relations (16) and (17) are satisfied,
Hence, the contrclled quantity Y can be made identically zero for T = O,
i.e, Stage 1 does not exist. For Y(0) = O and X3(0)>K, Transient Type
F is treated below, For T =£>0, Y becomes positive, for any X3' and X
at T = O under Conditions (7) and (8), for some positive number £ . The
reason for this is shown below, Since X;(0)=K by the assumption made
for Transient Type F and | Xyl € K by Relation (9) it follows that

YU = Xy *+ X5>0 at T =0 (28)

Hence, we have

£
Y(&) = J'O Y! 4T + Y(0) > 0 (29)

If we chcose the time origin at T = £ we obtain the initial condition

Y(0) > 0. Therefore, Transient Tyoe F reduces to Transient Type C,
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PROOF THAT TRANSIENTS ARE OPTIMUM

In the last section we treated all pcssible transient types which
may occur in Stage 1. e shall prove in this section that these typ=»s
of transients are all cptimum and uniquely determined so that the
quantity X3' and X, must be kept always at their extremum values in
Stage 1. It was shown that Transient Types A and B are optimum. It
was also shown that Transient Type Co is included by Transient Type Ej,
Ry the same reason Transient Type C; 1s involved by Transient Type Fq.
It was explained that the treatment of Transient Type F is equivalent
to that for Transient Type C. Thus, in this section, it is sufficient
to prove that Transient Types D, Ej and E, are optimum,

Before discussing the problem further we define the controlled aresa

as followg. The cortrolled area is that area betwetn a $ trajectory
and a ¥ trajectory in Stage 1,

The optimality c¢f Transient Typs D is prosed first, We shall prove
that the trajectories r3 and 4 in Tigure 4 determine the unique optimum
transient, As explained in the last section a transient time TR is
obtained such that the trajectery F} with slope -K coincides with the
trajectory O at T = TR. Since the slcpe of (,3 is increasing at the
maximum rate and is equal to -K at T = Ty, the slope of |q3 is always
less than or egual to ~K for T<Tg. Also, any ¢ trajectory other than

f“3 cannot have a slope equal to or greater than -K for T = TR. Kence

the tine duration TR is the minimum trarsient time and the trajectory



FB is optimum and uniquely deteimined. We will prove that the
trajectory 4 yields the minimum controlled area while the minimum
transient time TR is kept, The proof is by contradiction, Assume that
there exists a Y trajectory called A¥* which ylelds less controlled
area than the trajectory 8 and coincides with the trajectory r3 at the
instant T = Tg. Since the trajectory 4 lies under ['3 for T=Tg, the
trajectory A% must be over some finite time interval above 4 in order
to make the controlled area less, However, the trajectory 8% cannot
lie above 4 since 4 is the upper boundary of all trajectories a¥ for
the time interval corresvonding to the segment 0S. Therefore, the
trajectory 4% must exist, at least partly, above the line segment 0S.
However, the trajectory a* having passed the time corresponding to the
point S and once exceeding the line segment SP cannot reach this segment
again, The reason for this is that the trajectory 4 is decreasing at
the maximum rate for the line segment SPF, Therefore, the trajectory a*
cannot coincide with FB at the instsnt T = ¥, This violates the
assumrtion previously stated for the trajectory A*o Hence, there
exists no Y trajectory ylelding less controlled area than d. As seen
from Figure 4, the controlled quantity Y for Transient Type D is always
positive and decreasing monotonically, i.e, the transient has no ever or
under swing. This concludes the proof of ontimality of Transient Type Do
Next, we treat Transient Type Eq. We shall prove below that the
trajectories F5 and 42 in Figure 5(a) determine the optimum transient,
These trajectories are plotted in Figure 6 with notation unchanged,
Consider any trajectories for ® (T) and W(T) where the ¢ trajectory
has the same initial conditions as those for r'5, We plot the above

#* *
trajectories of $ ana ¥ , and designate them as ("5 and Az ’
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respectively, in Figure 6, Here, the trajectory A2 is the lower
boundary of 4d trajectories, Since the trajectory [,5 is concave up
with its slope increasing at the maximum rate, the trajectory 02*
exists below 4 5, Suppose that the trajectories fﬂ5* and A2* intersect
eacs cther twice., The case in which the second intersection point does
not exist will be treated in the same marner as for the atove case, i.e,
consider that the second intersection veint exists at T = oo, Let the first
intersection roint be denoted by Q* ard the second by R*, Alsc let the
points at which the trajectories r; and 42 intersect be deslgnated by
Q and R as in Figure 6, Since the trajectories 02* and \-5* lie above
and below, respectively, the trajectories «02 and rB, the point Q"
exists before the point Q arnd R¥ after R as shown in Figure 6, We will
show first that the controlled quantity Y cannot be made identically
zero at the instant corresvonding to the point Q*, Since the slope of
the trajectory Fg is increasing at the maximum rate and becomes -K at
the point Pg, the trajectory fﬂ5§ cannot have a slope greater than or
ecual to -K before the time corresponding to the point Ps. Hence, the
slope of r}“ at the point Q" is less than -K and Relation (17) is not
satisfied. Thus the quantity Y cannot be made identically zero, Since
the second intercection roint R* exists after the time T = T the
transient time determined by the trajectories ‘,5* and Ag* cannot exist
before the instant T = Tg. This is sufficient to show that the
tralectories l“5* and Az* are not ortimum and the unique optimum
trajectories are determined by the trajectories rs and AQ.

Finally, we treat Transient Type E,. The trajectories FFand 4,

shown in Figure 5(b) are plotted again in Figure 7 with notation
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unchanged, We shall prove belcw that the time duration Tp is the
minimum transient time and is uniquely determined by the trajectories

[" and A,. Consider another pair of ® and ¥ trajectories and
designate them respectively as l‘* and dg*e Since the trajectory 4>
is the lower boundary of Y trajectories, 4 2* may not be below 42, The
trajectory [T is concave up with its slope increasing at the maximum
rate for 0 £ T « Tg so that the trajectory T* cannot 1lie above [ for
this time interval, The trajectories M and AZ* intersect each other
at a time T <€ Tg, but the controlled aquantity Y cannot be set identically
zero at that insiant. The reascn fer this is the same as that for
Transient Type E; shown already,

The point on * at the time T = Tg denoted by S* in Figure 7T can
exist only below the point S. Let TR* be the transient time when the
trajectories r* and A'; intersect, Suppose that the time TR* is less
than TR. Then the trajectory [™® must cross the trajectory M with its
slope greater than that of [T at some time T between T5and Ta*, But the
slope of |7 is decreasing at the maximum rate., Hence, the slope of r*
is greater than that of M at the instant T = TR*, Also, the trajectory
[T has greater slope at the time T = TR* than at T = TR, Therefore, the
slope of M* at the instant T = TR* is greater than K, Thus, Relatlon
(16) does not hold for the function d)(T) rerresented by the trajectory
C* at the instant T = TR, i.e, the trajectories " and AZ* are not
admissible, Tt was proved above that the minimum transient time must be
Tp and this is uniquely determined by the trajectories [ and 4 5. As
seen from Figures6 and 7, non optimum trajectories yield greater under
swing than the optimum trajectories, This concludes the p;‘oof of

eptimality for Transient Type Eo.
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CONTEOL FUNCTIONS

In the previous sections all the possible optimum transients in
Stage 1 were shown and proofs of optimality were given., A control
which always gives the optimum transient must be able to predict which
type of optimum transient will follow so that the proper values of Xj!
and X, may be chosen, The functions, called the first and second
control functions, will be introduced in this section. The sign of
each of these control functions which depends on the initial conditiocns
is used to determine the optimum selection of X' and Xp.

The first control function is used in distinguishing whether
trajectory obtained by setting X3' = 1 is above, on or below the ¢
trajectory r2 shown in Figure 2. Waier the ¢ trajectory is below 42,
the second cortrol function is used to determine whether the ¢

trajectory is above, on or below the trajectory FL.

Derivation ¢f First Control Function

Assume that Y(0)=0, We consider what relationship between Y(O)
and X (0) will exist when the trajectory I as shown in Figure 2 is
cbtaired, Since the slope of the trajectory F2 at the time Tgo
corresyonding to the point Py is -K, it follows from Relation (24, ) that

¢! =Tre * X3(C) = K (30)
The time Ty given by the above relation is negative or zero when

X(0) = -K (31)



33

In this cese the optimal values of X3' and Xp are mace independent of
the control functions. This is discussed in the Appendix. Hence, we
sssume here that

X(0) = - K (32)
At the time T = TRy the trajectories r,2 and dl,coincide with each
other so that ® = ¥, Therefore, by Relatiors (21) and (24) we have the
following expression

T
¢ -y - B2+ x3(0) Trp * Y(0) - KT = 0 (33)
2

where the positive sign in the right hand side of Relation (21) has been
chosen, Substituting Tpo of Relation (30) into Relation (33), and
arranging it we have
® - ¥ =0) s 3{k @} {3K-x(00)} =0 (34)
Next we assume that Y(0)<O which corresponds to the mirror image
about the T axis of the trajectory P2 shown in Figure 2, The plot of
the above mirror image of the trajectory rg is designated by r'g* in
Figure 8 while the mirror image of the trajectory 4 1 is the trajectory
4 5. The point Pz* is the mirror image of the point Pp, of Figure 2,
Here the trajectory F; intersects the trajectory A2 with a slope K
at the point Pz*, Following the derivation of Relation (34), we can
find the expression at the time Tgy” which corresponds to the point P¥,
i.e,
Y-0¢ =-v0)+ 3 {rk-x()}{3Kk:x()] =0 (35
We assute, as in the first case that the time Tpo" is positive, i.e.
referring to Relation (26) we have
X;(0) 7 K (36)

The case for which X1(0) £ K is referred to the Appendix,
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Equstions (34) and (35) may be combined into the single equation

2 =0 (37)
where 217, celled the first contrel function, is given by
) = 1Yl s 3 (k-Ixl )3k Ixl) (38)
provided
Y=0, X] < -K (39)
or
Y<0, X3 > K (40)

Here Y(0) ard X;(0) have been replaced by Y and Xlwrespectively since
the time gxis may be shifted arbitrarily.

As may be seen from the definition of the first control function,
it has the following properties, The case where 2.,(0) =0 is
represented by the trajectory rﬂl of Figure 2 or ri* of Figure 8,

Here the trajectory r&* is the mirror image of f‘l, Similarly the
case in which 21(0)<O corresponds to the trajectory [ of Figure 2
and F}* of Figure 8, the trajectories [g and ré* are in mirror image

relationship,

Derivation of Second ControlrFunction

We are going to derive the relation in terms of the quantities Xl(O)
and Y(0O) corresponding to the trajectory [ﬁh shown in Figure 2, Thus assume
first Y(0)=0, The relation in consideration may be derived in the same
manner as that for derivation of Relation (34 ) except that we choose
here the negative sign in the right hand side of Relatiom (21). After

calculation it follows that

d - ¥ Y0 -3 {K+x(0}° =0 (41)
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Assuming next that Y(0O)= O, we can derive the relation
corresponding to Relation (35), i.e,
g - P = -Y0)-2{Kk~-X(0)}°=0 (42)
Similarly as in the vrevious section Relatiors (41) and (42) may be
combined into the single eguation
Z2 = 0 (43)
where 2.5 is called the second control function and is given by
o =1Yl - 3 (k- Ixl )? (44)
Here again X;(0) and Y(0) have been replaced by X3 and Y
respectively, In discussing gecmetrical properties of the second
control function, the argument for the first contrel function holds here
after replacing the trajectories r‘2 and 41 respectively by rl‘ and 45,
As seen from the derivation of the first and second control
functions, if 2J7 =0, it always follows that 25 =>0. The only case
when the sign of 2ZJ» cannot be determined by observing the sign of X3
is when Z'l‘ 0. Hence, as seen in the next secticn, we design the
control schedule such that the sign of the first control function is
checked first, If this sign is negative, the sign of the second control

function is monitored,
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OPTIMUM CONTROL SCHEDULE IN STAGE 1

wWith the aid of the control functions obtained in the last section
we can obtain all the information needed for determining the optimal
values of X' and X;. A schematic diagram of an optimum schedule,
called Program I, is shown in Figure 9, This schedule always gives the
optimal cholice of X;' and X5 in Stage 1 based on the instantaneous
values of Y(T) and X;(T). Hence, Program I yields one of Transient
Types A through F. Interpretation of the schematic diagram shown in
Figure 9 will be given below with an example,

Program I is composed of two kind of elements, called Checks and
Decisions, The function ef a Check is to monitor a state of the system
at every instant and the function of a Decision is to determine the
optimal selection of X3' and Xp based on Checks. A Check and Decision
process always begins with Check I and ends at one of Decisions 1
through 5. A series of Check and Decision processes will centinue until
Decision 5 is resched, If Decision 5 is attained, Program I stops its
function and Program II which is exrlained in the next section begins,

Consider, for example, the case in which Transient Type E2 as shown
in Figure 5(b) takes place, Since Y(0)=0, monitoring of the state of
the system goes from Check I te Check II-1. Sensing X;(0) = -K, Program
I monitors next Check II1I-1, where EZI(C)‘<O is obtained. Hence, Check
IV-1 must be made and 225(0)=<0 is sensed, This results in Decision 2,

where Xl' =1 and X, = K are selected. This selection agrees with the

.



38

ATCTIr

ﬂ, :r Aol

T o=k
11 AYEDOMd '
£ J DT
Cii 1 WYIS0dd W

T-AL 10¥HD | -> X
5] W WHN _ ¥ < X
AV ISP
<L
ToTIT NOEHS
7 Cy 3 ‘A T-II NCIHO co= a
- r | M .
L = Y n = HN : e v ,u\\ N V ;ﬁ
¢ on Ty s 5 =77 : ;
RSOt ! i A rN - A r.ﬁy f E A W
L - .f
_ m ' TR
| M | T NOISTUEC
| _ i
_ | —_ - = &
I =-= .Mx
T =ovis NI :
TINCTDS TOYINOD RONLILO io0ad 6 TNLLd

0> 1%

Cola e

Z=ITT youus

JanJ

el

PR

UL >

I04EC

L .HW , .__Wx

|

-

[

1L}

cx
.Hx

.

\

<3

SN ¢

Z-AI JCHHO



39

result explained in Trasient Type E;. The above Check and Decision
prccess does not change until the first intersection point of the
trajectories [ and 42 is obtained, At the first intersection point
the state Y = O is sensed by Check I, Then Check II-3 must be made
where Xr‘ -K is monitored so that Decision 2, the same as before, is
selected, Instantaneously, the trajectory r'goes below 42 and Y<O0
holds in Check I, Therefore, Check II-2 must follow and Decision 2
results, The above process continues until the point P on ™ 1s obtained
where Y<O0 and X; = K. At the instant after the pecint P is obtained
there occurs a change in Check II-2, i,e, X} >K instead of X3 = K holds.
However, since Z:1='O at this instant, Decision 2 is still kept by the
result of Check IIT-2, At T = Tg, it follews that T<O, X;>K and

2:1 = 0, For the first time Decision 2 is cancelled at this instant
and Decision L is chosen through Check I, Check II-2 and Check III-2,
This precess continues uatil the time T = Tg. At T = Tp we ebtain

Y = 0 and X = K and Decislon 5 ig selected, Program I ends and Stage 1

terminates at this instant,
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OPTIMUM CONTROL SCHEDUIE IN STAGE 2

Previous sectiens cencerned the optimum centrel in Stage 1,
The centrolled quantity is brought te zero at the end eof Stage 1. This
dees net imply, hewever, that the centrelling variables Xy 3nd X, are
alse brought te zere. In this sectien we shall develepe a centrel
schedule in which the variables X; and X2 become zere in minimum time
while the centrelled cuantity Y is kept zere,
When Stage 1 terminates it fellews that
Y=0 (45)
IXl=<K (46)
We take the time erigin at the end ef Stage 1, Then the abeve relatiens
are the initial cenditiens in Stage 2. In erder te keep Y identically
zere threughout Stage 2 we must set the derivative Y'! alse zere, i.e,
" eXy+X, =0
er
Xp = - Xy (47)
Since the variable X, can be made te take en any value subject te
Restrictien (8) and since the variable Xy has the initial conditien as
in Relatien (46), the variables Xj and X, satisfy Relatien (47) at T = 0O,
The eptimum centrel in Stage 2 is develeped belew. The variables
Xy and X3 must appreach zere in minimum time in such a manner that
Relatien (47) is satisfied, The variable X, can be set gere at any time

but enly the derivative of X) may be centrelled. Hence, the optimm
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contrel is ebtained when the variable X; appreaches zere at the maximum
rate, This implies the fellewing: if the variable X is pesitive its
derivative Xj' must be -1, Similarly, if the variable X; is negative
the derivative Xj' must be 1, In beth cases the abselute value of Xy
decreases teward zere so that Relatien (46) helds net enly at T = O but
alse at any instant in Stage 2., Whenever Relatien (46) holds Relation
(47) ean be satisfied as previcusly explained, If the variable X] is
zeres, the variable X5 is also set zere,

The eptimum centrel schedule developed abeve is shown by a schematic
diagram called Program II as in Figure 10. The interpretation ef this
diagram 1s as fellews, Program II begins if and enly if Pregram I
terminates. As in Pregram I, Pregram II has two kind ef elements, Check
and Decision., An eptimum precess must ge te Check first where the sign
of X; is menitered. If the variable Xj is pesitive, Decisien 1 will be
selected and X;' = -1 and Xy = = Xj. A similar argument applies te the
case when the variable Xy is negative, When Scth X; and X5 vanish
Decisien 3 is selected and the system remains at the reference state,

At this time Stages 1 and 2 terminate,
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ANALOG COVPUTER SIMULATION RESULTS

The results of the optimum control developed in the previous
sections were verified on an electronic analog computer, Two examples
are illustrated in Figures 11 (a) and (b), Here an upper figure shows
the transient of the controlled quantity Y for each case and a lower
figure refers tec the corresponding response of the controlling variables
Xy and X,, Figures 11 (3) show Transient Type F and Figures 11 (b)
Transient Type E;.

Relays were used in the logical switching circuits both in Programs
I and II, As seen in lower figures, the controlling variables fluctuate
momentarily at the relays switching instance, However, this does not
significantly affect the controlled quantity since the controlled
quantity is the integrated value of the controlling variables and
integration has a low pass filter effect which smoothes the response.

In fact, as shown in the upper figures of Figures 11, the actual
responses of the controlled quantity deviate from the theoretical values

only near T = O and at the end of Stage 1,
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CONCIUSION

A direct and straightforward techniocue to solve a simple class of
optimum nonlinear multivariable control probelms has been presented,
A system shown as an example has two inputs and one output where one of
the inputs and the time derivative of the other are bounded, If the
time opiimum control is not unicue, some other criterion must be added
such that the maximum over or under swing of the transient, the area
between the transient and the time axis, etc, are minimized. It is
shown how to program an actual optimum control schedule, It is
thecretically proved that all the transients based on the above control
schedule are optimum and the theory is verified on an electronic analog

computer,
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APPENDIX

In deriving the first centrel functien we assumed Relatiens (39) er
(4L0). The reasen fer this is explained belew, We censider enly the
case fer Y> O since the treatment is identical fer Y«O,

Suppese that

Y>>0, X =-K (18)
at T = 0. This cenditien ylelds the time Tp, negative where the time
Tro is given by Relation (30). The fellowing cases may eccur, A P
trajectery ebtained by setting ¢" = 1 teuches or intersects the
trajectery 47 fer T<O as shewn in Figure 12 where the first case is
represented by the trajectery rz' and the secend case by F;'. The
peints at which the trajectory rg' or r3' has slepe -K is respectively
on or belew the trajectery 41. Hence, if we substitute the values
Xl(O) and Y(0) fer the first case in Relatien (38) we ebtain

Zy(0) =0
Similarly fer the second case it fellews that

Zy(c)=o0
However, the trajecteries r2' and r'3' lie abeve the trajectery r2
for T>0, Since eur ebject in deriving the first centrel function is te
knew whether a ¢ trajectery fer ¢" = 1 1s abeve, on or belew the
trajectery r'2 fer T >0, the abeve twe cases are und‘esired results, This
cenflict may be everceme by the fellowing precedure, We design the

centrel schedule such that if Relatiens (48) are satisfied the eptimal
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FIGURE 12 UNDESIRABLE CASES IN

DERIVING FIRST CONTRCL FUNCTION
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selection of X}' and X; is the same as fer the case in which Z27(0)=0
and Relations (39) simultaneously held. Then Transient Type B is ebtained
which is eptimum, Similarly, we cenclude that if

<0, X =<K (49)
we let the eptimal selectien of Xl' and X, be the same as fer the case

in which X} =0 and Relations (40) held.
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